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ABSTRACT

Graphics processing units (GPUs) originally designed for 
computer video cards have emerged as the most powerful 
chip in a high-performance workstation. Unlike multicore 
CPU architectures, which currently ship with two or four 
cores, GPU architectures are “manycore” with hundreds of 
cores capable of running thousands of threads in parallel. 
NVIDIA’s CUDA is a co-evolved hardware-software 
architecture that enables high-performance computing 
developers to harness the tremendous computational power 
and memory bandwidth of the GPU in a familiar 
programming environment – the C programming language. 
We describe the CUDA programming model and motivate 
its use in the biomedical imaging community.  

1. MOTIVATION 

GPU computing, or the use of graphics processors for 
general-purpose computing, began in earnest several years 
ago [1]. Work to date has included much promising research 
in the biomedical domain (see for example [2-5]). However, 
this research initially involved programming the GPU via a 
graphics language, which limited its flexibility and was 
arcane for non-graphics experts. NVIDIA's CUDA platform 
changed that, providing a massively multithreaded general-
purpose architecture with up to 128 processor cores and 
thousands of threads in flight, programmable in C and 
capable of hundreds of billions of floating-point operations 
each second [6]. CUDA runs on all current NVIDIA GPUs, 
including the HPC-oriented Tesla product line. The 
ubiquitous nature of these GPUs (over 50 million CUDA-
capable boards have been sold as of this writing) makes 
them a compelling platform for accelerating high-
performance computing (HPC) applications. 

How much can GPU computing speed up a real-world 
science or engineering code? Researchers and companies 
are achieving speedups ranging from 10× to 100× (and 
sometimes more!) by using CUDA, across domains ranging 
from computational chemistry [7], to astrophysics [8], to CT 
[5] and MRI [9], to gene sequencing [10]. Examples from 
biomedical imaging include work at Friedrich-Alexander-
Universität Erlangen-Nürnberg to accelerate CT 
reconstruction on CUDA using the FDK algorithm [11] and 

work at the University of Illinois that accelerates advanced 
MRI reconstruction techniques using CUDA [12]. The latter 
focuses on reconstruction for non-Cartesian scan paths, 
which reduces image-space error from 45% for 
conventional reconstruction to 12% but has been considered 
computationally infeasible in practice. The approach runs 
13x faster on an NVIDIA Quadro FX5600 GPU than on an 
Intel Core 2 Extreme quad-core CPU, achieving 
reconstruction times of under 2 minutes for a 1283 volume.  

Speedups of this magnitude can change science. In a 
medical setting, order-of-magnitude speedups can cause a 
phase change in clinical practice, for example by moving an 
analysis from the lab with a turnaround time of days, to the 
exam room with a turnaround of minutes. Another phase 
change occurs in biomedical imaging when a technique 
moves from evaluative (e.g. checking afterwards to see if 
the stint was emplaced properly) to interactive (using 
imaging throughout to guide the emplacement procedure). 
In short, the potential to greatly accelerate computational 
techniques opens exciting avenues for biomedical imaging 
research. This paper gives a high-level survey of CUDA 
concepts, an entry point for interested developers, and a 
“feel” for CUDA programming.  

2. THE CUDA PROGRAMMING MODEL 

The fundamental strength of the GPU is its extremely 
parallel nature. The CUDA programming model allows 
developers to exploit that parallelism by writing natural, 
straightforward C code that will then run in thousands or 
millions of parallel invocations, or threads. Matrix addition 
will serve as a simple example. To add two N×N matrices 
on the CPU in C, one would write a doubly-nested for loop:  

// add 2 matrices on the CPU: 
void addMatrix(float *a, float *b,

                  float *c, int N) 
{
  int i, j, index; 
  for (i = 0; i < N; i++) { 
    for (j = 0; j < N; j++) { 
      index = i + j * N; 
      c[index]=a[index] + b[index]; 
    } 
  } 
}
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void main() 
{
  ..... 
  addMatrix(a, b, c, N); 
}

In CUDA, one writes a C function, called a kernel, to 
compute one element in the matrix, and invokes as many 
threads to run that function as the matrix has elements. In 
each thread the kernel runs with a predefined structure 
threadIdx indicating which of the many threads is running:  

// add 2 matrices on the GPU (simplified)
__global__ void addMatrix(float *a,float *b, 
                          float *c, int N) 
{
  int i= threadIdx.x; 
  int j= threadIdx.y; 
  int index= i + j * N; 
  c[index]= a[index] + b[index]; 
}
void main() 
{
  // run addMatrix in 1 block of NxN threads: 
  dim3 blocksize(N, N),
  addMatrix<<<1, blocksize>>>(a, b, c, N); 
}

Here the __global__ declaration specifier indicates a 
kernel function that will run on the GPU, and the  
<<<N, N>>> syntax indicates that the addMatrix() function 
will be invoked across a group of threads run in parallel, 
called a thread block. Thread blocks may be one-, two-, or 
three-dimensional, providing a natural way to invoke 
computation across the elements in a domain such as a 
vector, matrix, or field.  

CUDA makes three key refinements to the core concept of 
running kernel functions across many parallel threads: 
hierarchical thread blocks, shared memory, and barrier 
synchronization.  

2.1. Hierarchical thread blocks 

Thread blocks may contain up to 512 threads on an 
NVIDIA Tesla architecture GPU, but kernels are invoked 
on a grid consisting of many thread blocks that are 
scheduled independently. All the threads in all the blocks in 
a grid execute the kernel and then exit. Thus the CUDA 
code given above needs to be extended slightly:  

// add 2 matrices on the GPU (scalable)
__global__ void addMatrix(float *a,float *b, 
                          float *c, int N) 
{
  int i=blockIdx.x*blockDim.x+threadIdx.x; 
  int j=blockIdx.y*blockDim.y+threadIdx.y; 
  int index = i + j * N; 
  if ( i < N && j < N) 
    c[index]= a[index] + b[index]; 
}

// not shown: allocate & copy matrices to GPU 
void main() 
{
  dim3 dimBlock (16, 16); 
  dim3 dimGrid (N/dimBlk.x, N/dimBlk.y);
  // run addMatrix in blocks of 16x16 threads: 
  addMatrix<<<dimGrid, dimBlock>>>(a, b, c,N); 
}

Here a thread block size of 16x16 = 256 threads was 
chosen somewhat arbitrarily, and a grid is created with 
enough blocks to have one thread per matrix element as 
before. The threads in each thread block are run in parallel; 
multiple thread blocks may be run one after another or in 
parallel depending on the resources of the GPU. This 
hierarchical organization – with thread blocks restricted to a 
finite size and a grid of many blocks – enables programmers 
to write scalable code. A CUDA program will run on a low-
cost, low-power GPU capable of processing only one block 
of threads in parallel, but scale efficiently in performance up 
to high-end GPUs capable of running dozens of blocks, and 
to future GPUs capable of running hundreds of blocks. 

2.2. Shared memory 

In our simple matrix addition example, threads can 
efficiently run independently: no thread needs to know the 
elements being accessed by other threads. Often however 
many threads can solve a problem more efficiently by 
cooperating, sharing the results of computations or memory 
fetches. CUDA enables this cooperation by providing 
shared memory where kernels can store data – e.g. variables 
or arrays – that are visible to all threads in a thread block. 
For example, the threads in a block could compute the sum 
of the elements in an array by each placing one element into 
an array in shared memory, then adding the element next to 
it, then the element located four array slots away, then eight, 
and so on. All the other threads in the block are doing the 
same thing in parallel – they are cooperating by computing  
partial sums through shared memory. Shared memory is on-
chip and thus small (16K on NVIDIA’s current GPUs) but 
extremely fast, so exploiting shared memory makes this 
summing operation dramatically faster.  

2.3 Barrier synchronization 

Once threads are operating in parallel on the same 
memory, it becomes important to provide a mechanism that 
guarantees (for example) that one thread will not attempt to 
read a result before another thread has finished writing it. 
CUDA provides the __syncthreads() intrinsic function for 
this purpose. __syncthreads() acts as a barrier at which 
all threads in the block must wait before any are allowed to 
proceed. CUDA’s synchronization is intentionally simple 
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and lightweight, so that programmers can use a barrier to 
synchronize before threads read or write to shared memory.  

3. SUMMARY 

NVIDIA GPUs provide massive computation resources, 
with up to hundreds of cores running thousands of threads. 
CUDA makes that raw computational power accessible and 
easy to program by allowing the user to write natural C code 
which is then run by thousands or millions of threads. 
Threads are organized in a two-level hierarchy of blocks 
and grids. Threads run in parallel with other threads in their 
thread block and can intercommunicate via shared memory, 
with simple barriers to synchronize. This minimal set of 
extensions to C nonetheless exposes the power of massive 
parallel programming. 

Researchers around the world and across all scientific and 
engineering disciplines are successfully using CUDA and 
NVIDIA GPUs to speed their codes up by one to two orders 
of magnitude. We have attempted to motivate the use of 
GPU computing in biomedical imaging and provide a brief 
overview of the “feel” of CUDA programming. We 
encourage researchers to learn more, see what others are 
publishing, and try CUDA themselves [13].  

11. REFERENCES 

[1] See http://gpgpu.org.

[2] G. C. Sharp, N. Kandasamy, H. Singh, and M. Folkert, “GPU-
based streaming architectures for fast cone-beam CT image recon 
struction and Demons deformable registration,” Physics in 
Medicine and Biology, 2007.

[3] C. Vetter and C. Guetter and C. Xu and R. Westermann, “Non-
rigid multi-modal registration on the GPU,” Medical Imaging 
2007: Image Processing, SPIE, vol. 6512, Mar 2007.

[4] J. Gu and L. Gu, “Fast DDR Generation Based on GPU,” Int’l
Journal of Computer Assisted Radiology and Surgery, Jun 2006. 

[5] F. Xu and K. Mueller. “Real-Time 3D Computed Tomographic 
Reconstruction Using Commodity Graphics Hardware,” Physics in 
Medicine and Biology, vol. 52, pp. 3405–3419, 2007. 

[6] NVIDIA. 2007. CUDA Programming Guide 1.1; see 
http://developer.download.nvidia.com/compute/cuda/1_1/NVIDIA_
CUDA_Programming_Guide_1.1.pdf.

[7] J. Stone, J. Phillips, D. Hardy, P. Freddolino, L. Trabuco, K. 
Schulten. “Accelerating molecular modeling applications with 
graphics processors,” Journal of Computational Chemistry, Vol. 
28, No. 16 , pp 2618 – 2640, 25 Sep 2007. 

[8] R. G. Belleman, J. Bédorf and S. F. Portegies, “High 
Performance Direct Gravitational N-body Simulations on Graphics 

Processing Units II: An implementation in CUDA,” arXiv:0707.
0438v2 [astro-ph], Jul 2007 (Accepted to New Astronomy). 

[9] W. Jeong, P. T. Fletcher, R. Tao, and R.T. Whitaker, 
“Interactive Visualization of Volumetric White Matter 
Connectivity in DT-MRI Using a Parallel-Hardware Hamilton-
Jacobi Solver,” Proc. IEEE Visualization 007, Oct 2007.

[10] M. C Schatz, C. Trapnell, A. L Delcher, and A. Varshney, 
“MUMmerGPU: High-throughput sequence alignment using 
Graphics Processing Units,” BMC Bioinformatics 2007, 8:474, 
Dec 2007.

[11] H. Scherl, B. Keck, M. Kowarschik, and J. Hornegger. “Fast 
GPU-Based CT Reconstruction using the Common Unified Device 
Architecture (CUDA),” 2007 Nuclear Science Symposium and 
Medical Imaging Conference, Honolulu HW (Oct 2007).

[12] S. Stone, J. Haldar, S. Tsao, W. Hwu, Z. Liang, B. Sutton. 
“Accelerating Advanced MRI Reconstructions on GPUs”, ACM
Frontiers in Computing, Ischia, Italy, to appear (May 2008). 

[13] See http://nvidia.com/cuda

838


